COMPARATIVE STUDY OF THE EFFECT OF PORTULACA OLERACEA WATER EXTRACT AND CANAGLIFLOZIN (INVOKANA) ON ALLOXAN-INDUCED DIABETES IN ADULT MALE ALBINO RAT

Document Type : Original Article

Authors

1 Departments of Medical Physiology, Al-Azhar Faculty of Medicine

2 Departments of Histology, Al-Azhar Faculty of Medicine

3 Departments of Clinical Pathology, Al-Azhar Faculty of Medicine

Abstract

Background: Diabetes mellitus (DM) is the most common endocrine disorder. There is a strong need for new drugs with little adverse effects. Canagliflozin is approved as SGLT2-inhibitor and Portulaca oleracea, herbaceous plant, have a considered efficacy and safety in glycemic control with little side effects.
Objectives: Comparing the effects of Portulaca Oleracea water extract and Canagliflozin (Invokana) on alloxan-induced diabetes in adult male albino rat.
Materials and Methods: Eighty albino rats were randomly categorized into 8 equal groups. Group I (normal control) and group II (diabetic control) were gavaged with normal saline. Three normal groups (groups III, IV, V) and three diabetic groups (groups VI, VII, VIII) were treated with Portulaca Oleracea extract (250 mg/kg body weight), Canagliflozin (10 mg/kg body weight) and both Portulaca  Oleracea and Canagliflozin in the same doses respectively. Blood and tissue samples were obtained for analysis after 10 weeks of treatment.
Results: More significant reduction occured in serum glucose level by canagliflozin. Elevated liver enzymes, blood urea nitrogen and lipid profile improved more by Portulaca. Portulaca has an antioxidant activity.
Conclusion: Portulaca  Oleracea extract is more potent anti-oxidant, tissue protective and regenerative agent for liver and kidney, but weaker hypoglycemic agent than canagliflozin.

Keywords


COMPARATIVE STUDY OF THE EFFECT OF PORTULACA OLERACEA WATER EXTRACT AND CANAGLIFLOZIN (INVOKANA) ON ALLOXAN-INDUCED DIABETES IN ADULT MALE ALBINO RAT

By

 

Adel Shalaby, Gamal Ahmad Shawer, Hassan Sabry Aly Al-Dawy*, Mohammad Abd El-Hamid Basiuny** and Mohammad Othman Zarad

Departments of Medical Physiology, Histology* and Clinical Pathology,** Al-Azhar Faculty of Medicine

ABSTRACT

Background: Diabetes mellitus (DM) is the most common endocrine disorder. There is a strong need for new drugs with little adverse effects. Canagliflozin is approved as SGLT2-inhibitor and Portulaca oleracea, herbaceous plant, have a considered efficacy and safety in glycemic control with little side effects.

Objectives: Comparing the effects of Portulaca Oleracea water extract and Canagliflozin (Invokana) on alloxan-induced diabetes in adult male albino rat.

Materials and Methods: Eighty albino rats were randomly categorized into 8 equal groups. Group I (normal control) and group II (diabetic control) were gavaged with normal saline. Three normal groups (groups III, IV, V) and three diabetic groups (groups VI, VII, VIII) were treated with Portulaca Oleracea extract (250 mg/kg body weight), Canagliflozin (10 mg/kg body weight) and both Portulaca  Oleracea and Canagliflozin in the same doses respectively. Blood and tissue samples were obtained for analysis after 10 weeks of treatment.

Results: More significant reduction occured in serum glucose level by canagliflozin. Elevated liver enzymes, blood urea nitrogen and lipid profile improved more by Portulaca. Portulaca has an antioxidant activity.

Conclusion: Portulaca  Oleracea extract is more potent anti-oxidant, tissue protective and regenerative agent for liver and kidney, but weaker hypoglycemic agent than canagliflozin.

Key words: Portulaca Oleracea, Canagliflozin, diabetes.

 

 

INTRODUCTION

     Diabetes mellitus represents a global health problem because of its possible complications. It is one of the leading causes of death. It is considered the third greatest “killer” after cancer (Ketan and Annapurna, 2014). So, it needs to be treated urgently as hyperglycemia causes multiorgan damage which decreases quality of life (Parveen et al., 2015).

     Complementary medicine can offer novel, safe, and cost‐effective options for regulating plasma glucose levels and blood lipid profiles (Hadi et al., 2018). One form of these complementary medicines is theuse of herbaceous plants such as Portulaca oleracea.

     Sodium glucose co-transporter 2 inhibitors represent a new class of oral anti-diabetic agents with a novel mechanism that inhibits glucose reabsorption, allowing glucose to be excreted (Zurek et al., 2017).

     The present work was designed to compare the effect of Portulaca Oleracea water extract and Canagliflozin (Invokana) on alloxan-induced diabetes in adult male albino rat. 

MATERIALS AND METHODS

     Eighty adult male albino rats of a local strain were chosen as an animal model of this study.  Weight of rats ranged between 80-120 g. they were kept in cages (35x45x35 cm-for every 5 rats). They were kept for 10 days to adapt to normal temperature and normal dark/ light cycle, and feds on rats pellets and green vegetables in addition to water ad lib. They were randomly categorized into 8 equal groups: 

1-Nomal control group treated with normal saline received 2 ml normal saline by gavaging daily.

2- Diabetic control group treated with normal saline received 2 ml normal saline by gavaging daily.

3- Normal control group treated with Portulaca only received 250 mg/kg Portulaca Oleracea extract by gavaging daily (Lee et al., 2012).

4- Normal control group treated with Invokana only received 10 mg/kg/day Invokana by gavaging daily (Yin et al., 2012).

5- Normal control group treated with Portulaca and Invokana: received 250 mg/kg Portulaca  Oleracea extract and 10 mg/kg Invokana daily .

6- Diabetic group treated with Portulaca only received 250 mg/kg Portulaca Oleracea extract by gavaging daily.

7- Diabetic group treated with Invokana only received 10 mg/kg/day Invokana by gavaging daily.

8- Diabetic group treated with Portulaca and Invokana received 250 mg/kg Portulaca Oleracea extract and 10 mg/kg Invokana daily.

     Experimental procedure continued for 10 weeks.

     Diabetes mellitus was induced by a single IP injection of alloxan at a dose of 160 mg/kg (Szkudelski, 2001). This was preceded by single IP injection of nicotinamide at a dose of 110 mg/kg to alleviate alloxan toxicity (Madkor et al., 2011).

     Canagliflozin ( Invokana; 300mg ) was purchased from Janssen Pharmaceutical Industries, USA. Each white tablet contained 118 mg lactose as an inactive ingredient. The tablets were crushed, dissolved in distilled water and given orally in a dose of 10 mg/kg/day (Yin et al., 2012).

Preparation of Portulaca water extract: After taxonomical identification of the plant, the collected leaves were dried at room temperature for seven days and ground in to a powder. This powder was boiled at 60~70 °C in distillated water (at a ratio of 1 g per 9 ml) for 30 minutes, and the decoction were filtered through cotton wool. The filtrate was concentrated at 65°C by a rotavapor before lyophilization, dissolved in distilled water, and was given at daily dose of 250 mg/kg for 10 weeks (Lee et al., 2012).

     Blood samples and tissue sections of liver, kidney and pancreas were obtained for analysis at the end of experiment.


RESULTS

    

 

     Invokana reduced serum glucose level significantly more thaPortulaca without increase in fasting serum insulin level in diabetic group (Table 1).

 

 

Table (1): Effect of Portulaca Oleracea and Invokana on Fasting Blood Sugar FBS (mg/dl) and Fasting serum Insulin (ng/ml) (mean± SD)

Parameters  

     Groups

FBS(mg/dl)

Insulin (ng/ml)

    Group 1    (Normal)

84.5±7.96

34.2±2.25

    Group 2    (Diabetic)

284.1±25.59

5.68±1.07

    Group 3    (Portulaca)

84.65±2.33

32.28±1.99

    Group 4    (Invokana)

84.3±4.40

32.02±1.81a

    Group 5    (Portulaca + Invokana)

84.6±6.95

32.2±2.02

    Group 6    (Diabetic- Portulaca) 

111±7.64b,d

6.23±1.16 d

    Group 7    (Diabetic- Invokana)

101.6±5.6b,c,e

5.69±1.08 e

       (a) Significance versus   normal control group                    (c) Significance versus group (6)

       (b) Significance versus   diabetic control group                  (d) Significance versus group (3)           

       (e) Significance versus group (4)                                          (f) Significance versus group (5)

     Table (2): Effect of Portulaca Oleracea and Invokana on liver Functions (mean±SD)

Parameters

Groups

AST(U/L)

ALT(U/L)

Albumin(g/dl)

Group 1    (  Normal  )

28.6±2.01

29.7±4.45

4.1±0.25

Group 2    (Diabetic  )

72.4±5.30

55.7±8.01

3.6±0.40

Group 3    (Portulaca)

27.6±2.32

28.2±5.79

4.09±0.27

Group 4    (Invokana )

40.1±6.12a,d

29.9±6.03

4.07±0.26

Group 5    (Portulaca + Invokana)

27.5±2.32

28.1±4.23

4.08±0.30

Group 6    (Diabetic- Portulaca ) 

39.2±5.67b,d

29.7±5.95b

3.6±0.32d

Group 7    (Diabetic- Invokana )

45.2±2.20b,c,e 

43.6±4.43 b,c,e 

3.6±0.40

Group 8 (Diabetic – P. + Invokana)

46.1±0.37 b,f

29.9±3.56 b,f

3.73±10.32 b,f

       (a) Significance versus   normal control group                    (c) Significance versus group (6)

       (b) Significance versus   diabetic control group                  (d) Significance versus group (3)          

       (e) Significance versus group (4)                                          (f) Significance versus group (5)

 

Figure (1): A photomicrograph of a pancreatic tissue (H & E   x400) showing:

 

pancreatic acini (AC) and an islet of Langerhans (IL) with a clear separation line between them (black arrows). The islet shows some restoration of the cord arrangement of the cells (red arrow).

A) Diabetic group treated with portulaca)

B) Diabetic group treated with Invokana)

(C)Diabetic group treated with Portulaca and Invokana

Figure (2): A photomicrograph of a liver tissue of groups 6, 7 and 8 (H & E x400)

A (Diabetic group treated with portulaca):  less similar to control group showed some inflammatory cells and some vacuolated cells

B (Diabetic group treated with Invokana) showed more inflammatory cells (black arrow) and vacuolated cells

C (Diabetic group treated with Portulaca and Invokana) more or less similar to control group 

 

 

 

 

 

 

 

Figure (3): A photomicrograph of a renal tissue (H & E   x400)

A (Normal control group) normal glomerular structure, tubules and collecting ducts

B (Diabetic group treated with no treatment) showing disturbed glomerular basement membrane with chronic inflammatory cell infiltration.

C (Diabetic group treated with portulaca) showing markedly preserved glomerular and tubular structure.

D (Diabetic group treated with Invokana) showing moderately preserved glomerular and tubular structure, but some inflammatory cell infiltration is present.

 

 

     Histopatholological sections of pancreatic tissue revealed marked improvement of degeneration and necrosis in diabetic group (Fig. 1).

     Portulaca and Invokana reduced elevated liver enzymes in diabetic group, but Portulaca reduced liver enzymes more than Invokana (Table 2).

     These results were supported by histopathological examination of liver tissue  as sections showed improvement in inflammatory cells and vacuolated cells, and become less similar to control group. The improvement was clear in Portulaca sections more than Invokana (Fig.2).

     Serum creatinine showed no changes  with Portulaca and Invokana treatments. Invokana caused  increase in serum BUN level in normal group. In diabetic group, Portulaca and Invokana decreased serum BUN level but Portulaca was more effective (Table 3) .

     Histopathological sections showed  that preservation of glomerular and tubular structure was less in  diabetic group treated with Invokana, and  some inflammatory cell infiltration were present (Fig.3) .

 

 

 

Table (3): Effect of Portulaca and invokana on kidney functions (Mean ± SD)

Parameters  

          Groups

Creatinine(mg/dl)

BUN(mg/dl)

Group 1    (  Normal  )

0.99±0.21

16.2±2.57

Group 2    (Diabetic  )

1.15±0.16

30±3.74

Group 3    (Portulaca)

0.98±0.15

14.3±2.36

Group 4    (Invokana )

1.09±0.18

28.4±4.53a,d

Group 5    (Portulaca +Invokana )

1.03±0.19

21.4±4.74 a

Group 6    (Diabetic:Portulaca ) 

0.98±0.15

14.3±2.36 b

Group 7    (Diabetic:Invokana )

1.14±0.15

21.8±5.05 b,c,e

Group8 (Diabeti:Portulaca+invokana)

1.02±12.05

19±0.68 b,f

       (a) Significance versus   normal control group                    (c) Significance versus group (6)

       (b) Significance versus   diabetic control group                  (d) Significance versus group (3)          

       (e) Significance versus group (4)                                          (f) Significance versus group (5)

 

 

     Portulaca improved lipid profile in diabetic rats as it decreased serum triglycerides, LDL, total cholesterol and increased serum HDL, while Invokana increasd serum LDL and caused similar effects of Portulaca on other lipid profile markers (Table 4).


 

 

 

 

Table (4): Effect of Portulaca Oleracea and Invokana on lipid profile (mean ±SD)

Parameters

     Groups

Cholesterol (mg/dl)

Triglycerides (mg/dl)

HDL

(mg/dl)

LDL

(mg/dl)

Group 1 (Normal)

139.9±4.58

99.2±10.35

40.2±4.83

79.86±7.16

Group 2 (Diabetic)

208.6±43.48

181.2±9.26

34.6±4.48

137.76±44.24

Group 3 (Portulaca)

131.3±11.06

92.8±11.96

41.4±2.01

71.34±10.37

Group 4 (Invokana)

130.6±10.29

89.3±9.45 a

41.5±1.27

86.84±3.52

Group 5 (Portulaca + Invokana)

130.1±10.32

89.2±6.03 a

41.5±2.01

70.76±9.55

Group 6 (Diabetic- Portulaca) 

134.7±6.72b

101.3±13.12 b

34.6±4.48 d

79.84±9.75

Group 7 (Diabetic- Invokana)

131.3±11.06 b

92.8±11.96 b

41.4±2.01 b,c

143.9±7.55 c,e

Group 8 (Diabetic – P. + inv.)

133.3±4.60 b,f

106.5±8b,f

34±0.83 b,f

144.8±7.35 b,f

       (a) Significance versus   normal control group                    (c) Significance versus group (6)

       (b) Significance versus   diabetic control group                  (d) Significance versus group (3)          

       (e) Significance versus group (4)                                          (f) Significance versus group (5)

 

 

     Portulaca oleracea has a potent antioxidant activity. It caused a significant decrease in serum MDA level, and increase in serum SOD, catalase and GSH in diabetic group (Table 5).


Table (5): Effect of Portulaca Oleracea and Invokana on antioxidants profile (Mean±SD)

Parameters

     Groups

MDA (nmol/ml)

SOD(nmol/ml)

Catalase (pg/ml)

GSH (mg/dl)

Group 2 (Diabetic)

5.66±0.87

96.1±7.16

25.5±3.60

8.58±1.15

Group 3 (Portulaca)

1.11±0.45

146.8±7.54

43.1±2.92

13.19±1.95

Group 4 (Invokana )

5.78±0.75a,d

102.6±10.32 a,d

33.1±3.93 a,d

10.58±1.01a,d

Group 5 (Portulaca + Inv.

1.11±0.37

146.8±7.51

40.2±3.49

13.19±1.95

Group 6 (Diabetic+ Port.) 

2.06±0.27 b

122.4±6.24 b,d

31.1±2.27 b,d

11.01±0.81 b,d

Group 7 (Diabetic- Inv.)

5.56±0.89 c

96.7±7.17 c

26.3±3.68 c,e

9.1±1.11c,e

Group 8 (Diabetic – P. + inv.)

2.28±3.51 b,f

118.4±0.79 b,f

33.05±3.51b,f

11.37±0.79 b,f

       (a) Significance versus   normal control group                    (c) Significance versus group (6)

       (b) Significance versus   diabetic control group                  (d) Significance versus group (3)           

       (e) Significance versus group (4)                                          (f) Significance versus group (5)

 

 

DISCUSSION

     Although there are available effective and well-tolerated treatments of diabetes, still many patients could not attain recommended glycemic level (Chaudhury et al., 2017).  Complementary medicine can offer novel, safe, and cost‐effective options for regulating plasma glucose levels and blood lipid profiles (Hadi et al., 2018). One form of these complementary medicines is the use of herbaceous plants such as Portulaca oleracea.

     Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new category of diabetic medications indicated just for the treatment of type 2 diabetes. Along with exercise and a healthy diet, they can improve glycemic control (Zurek et al., 2017).

     The current study showed significant increase in blood glucose levels after alloxan injection of the rats. (Etuk & Muhammed, 2010) and (Adeyi et al., 2012) attributed this increase in glucose levels to the reactive oxygen species induced by alloxan. This, in conjunction with a simultaneous massive increase in cytosolic calcium concentrations led to rapid destruction of pancreatic islet cells and a concomitant reduction in synthesis/release of insulin. This was confirmed here by histopathological results in alloxan-treated rats, as there were marked reduction in the size of cellular components of the islet cells along with variable levels of degeneration and the appearance of apoptotic cells. Such outcomes were in line with those of (Adeyemi et al., 2015) who noted a significant reduction in the numerical density of islet cells (number/pancreas), islet cell area and diameter and β-cell density in diabetic rats.

     Blood glucose level revealed that Portulaca reduced serum glucose level significantly compared to diabetic group. This result was in agreement with the findings of (Gu et al., 2015), (Bai et al., 2016), (Ramadan et al., 2017), (Park et al., 2018). This may be due to the potentiation of insulin secretion from β-islet cells (Ramadan et al., 2017), enhancement of the translocation of GLUT4 to the plasma membrane, enhancement of glucose uptake through the PI3K/Akt pathway (Park et al., 2018), or increase in the amount of GLP1 (Heidarzadeh et al., 2013).

     In the present study, Invokana reduced serum glucose level significantly more than portulaca. This could be attributed to its beta cell-independent mechanism (Zurek et al., 2017).

     This study showed non-significant decrease in diabetic group treated with Invokana when compared to diabetic Portulaca group. This may be in connection with increasing insulin secretion by Portulaca through closing of the channel gate ATP-K+, membrane depolarization and Ca2+ entry stimulation as the first key step in insulin secretion (Gong and Li, 2009).   Also, increase the amount of GLP-1 as an affecting marker on pancreatic beta cells and insulin may be a contributing factor (Heidarzadeh et al., 2013).

     Reduction of elevated liver enzymes  in diabetic group results were constant with that obtained in a study performed by (Leiter et al., 2016) , (Gautam et al., 2018) and (Li et al., 2018) . This may due to hypoglycemic, anti-inflammatory and immunomodulatory effects of Portulaca (Kaveh et al., 2017), and antioxidant enzymes activities of Portulaca (Chen et al., 2016). Canagliflozin besides controlling the blood sugar level also reduced the weight of patients of type 2 diabetes which improves liver enzymes (Gautam et al., 2018).

     Improvement of lipid profile with Portulaca was in agreement with (El-Newary, 2016), (Iranshahy et al., 2017), (Hadi et al., 2018) and (Nazeam et al., 2018). This improvement may be due to control of diabetes and active ingredient of Portulaca as omega-3 fatty acids content (Hadi et al., 2018).

     Canagliflozin was associated with increase in plasma levels of low-density lipoprotein potentially resulting from metabolic changes such as increased lipoprotein lipase activity, but the exact mechanism is unknown (Zurek et al., 2017).

     Increase of serum BUN in Invokana in normal group may due to dehydration due to osmotic diuresis as increased serum urea is seen associated with such conditions (Gowda et al., 2010).

     Portulaca possesses marked nephroprotective activity, and have a promising role in the treatment of acute renal injury induced by nephrotoxins (Ghara and Ghadi, 2018).

     Improvement of antioxidant profile with Portulaca was in agreement with (Ghorbani et al., 2013) and (Sadeghi et al., 2016). The alkaloids including oleracein A, oleracein B and oleracein E found in purslane have shown antioxidant activity based on scavenging activity against 1,1-diphenyl- 2-picryl-hydrazyl (DPPH) radical, and inhibitory impact on hydrogen peroxide-induced lipid peroxidation in rat brain homogenates (Sadeghi et al., 2016).

CONCLUSION

     Both Portulaca oleracea and Canagliflozin have values in diabetic management, but Canagliflozin was more potent. Also, both agents showed hepatic protective effects against diabetic induced hepatic injury with the upper hand for portulaca. Portulaca can prevent pathogenesis of diabetic complications namely hyperlipedemia, oxidative stress, renal impairement and stimulating inflammatory processes more than canagliflozin.

REFERENCES

1.  Adeyemi DO, Komolafa OA, Adewole OS, Obuotor EM, Abiodun AA and  Adenowo TK (2010):  Histomorphological and morphometric studies of the pancreatic islet cells of diabetic rats treated with extract of Annonamuricata. Folia Morphol., 69(2):92–100.

2.  Adeyi A, Idowu B, Mafiana C, Oluwalana S, Ajayi O and Akinloye O (2012): Rat model of food-induced non-obese-type 2 diabetes mellitus: comparative pathophysiology and histopathol-ogy. Intl J Physiol Pathophysiol Pharmacol., 1:51–8.

3.  Bai Y, Zang X, Ma J and Xu G (2016): Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats. Int. J. Mol. Sci., 17(8): 1201-14.

4.  Chaudhury A,  Duvoor C,  Dendi VS,  Kraleti S,  Chada A,  Ravilla R,  Marco A,  Shekhawat NS,  Montales MT,  Kuriakose K,  Sasapu A,  Beebe A,  Patil N,  Musham CK,  Lohani GP and  Mirza W (2017): Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Forst Management.,  Front Endocrinol (Lausanne), 17(8):1– 6.

5.  Chen L, Liu Y, Jia D, Yang J, Zhao J, Chen C, Liu H and Liang X (2016): Pharmacokinetics and biodistribution of aurantiamide and aurantiamide acetate in rats after oral administration of Portulaca oleracea L. extracts. J. Agric. Food Chem., 64: 3445-3455.

6.  El-Newary SA (2016): The hypolipidemic effect of Portulaca oleracea L. stem on hyperlipidemic Wister Albino rats. Annals of Agricultural Science, 61(1): 111–124.

7.  Etuk E and Muhammed B (2010): Evidence-based analysis of chemical method of induction of diabetes mellitus in experimental animals. Asian J Exp Biol., 1:331–6.

8.  Gautam A, Agrawal PK, Doneria J and Nigam A (2018): Effects of Canagliflozin on Abnormal Liver Function Tests in Patients of Type 2 Diabetes with Non-Alcoholic Fatty Liver Disease. Journal of The Association of Physicians of India, 66(1): 62-65.

9.  Ghara AR and Ghadi FE (2018): Effect of purslane on kidney failure following copper toxicity in a rat model. Iranian Journal of Health Sciences, 6(1): 25-32.

10. Ghorbani MR, Bojarpur M, Mayahi M, Fayazi J, Fatemitabatabaei R and Tabatabaei S (2013): Effect of purslane (Portulaca oleracea L.) on blood lipid concentration and antioxidant status of broiler chickens. Online J. Vet. Res., 17, 54–63.

11. Gong F and Li F (2009): Hypoglycemic Effects of Crude Polysaccharide from Purslane. Int. J. Mol. Sci., 10:880-8.

12. Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AA and Vernekar SN (2010): Markers of renal function tests. N Am J Med Sci., 2(4): 170–173.

13. Gu JF, Zheng ZY, Yuan JR, Zhao BJ, Wang CF, Zhang L, Xu QY, Yin GW, Feng L and  Jia XB (2015): Comparison on hypoglycemic and antioxidant activities of the fresh and dried Portulaca oleracea  L. in insulin-resistant HepG2 cells and streptozotocin-induced C57BL/6J diabetic mice. J Ethnopharmacol., 161:214-23.

14. Hadi A, Pourmasoumi M, Najafgholizadeh A, Kafeshani M and Sahebkar A (2018): Effect of purslane on blood lipids and glucose: A systematic review and meta‐analysis of randomized controlled trials. Phytotherapy Research, 18:1–10.

15. Heidarzadeh S, Farzanegi P, Azarbayjani MA and Daliri R (2013): Purslane Effect on GLP-1 and GLP-1 receptor in type 2 diabetes. Electronic Physician, 5(1): 582-87.

16. Iranshahy M, Javadi B, Iranshahi M, Jahanbakhsh SP, Mahyari S,  Hassani FV and Karimi G (2017): A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. J Ethnopharmacol., 9(205):158-172.

17. Kaveh M, Eidi A, Nemati A and Boskabady MH (2017): Modulation of lung inflammation and immune markers in asthmatic rats treated by Portulaca Oleracea. AJP, 7(5): 409-16.

18. Ketan H and Annapurna A (2014): The effect of quercetin on blood glucose levels of normal and streptozotocin induced diabetic (type i & type ii) rats. IJPCBS, 4(3):613–9.

19. Lee AS, Lee YJ, Lee SM, Yoon JJ, Kim JS, Kang DG and Lee HS (2012): An Aqueous Extract of Portulaca Oleracea Ameliorates Diabetic Nephropathy Through Suppression of Renal Fibrosis and Inflammation in Diabetic db/db. MiceThe American Journal of Chinese Medicine, 40 (3): 495–510.

20. Leiter LA, Forst T, Polidori D, Balis DA, Xie J and Sha S (2016): Effect of Canagliflozin on liver function tests in patients with type 2 diabetes. Diabetes Metab., 42 (1): 25-32.

21. Li B, Wang Y, Ye Z, Yang H, Cui X, Wang Z and Liu L (2018): Effects of Canagliflozin on Fatty Liver Indexes in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials, J Pharm Pharm Sci., 21(1):222-235.

22. Madkor HR, Mansour SW and Ramadan G (2011): Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin – nicotinamide diabetic rats. British Journal of Nutrition, 105: 1210-1217.

23. Nazeam JA, El-Hefnawy HM, Omran G and Singab A (2018): Chemical profile and antihyperlipidemic effect of Portulaca oleracea L. seeds in streptozotocininduced diabetic rats. Natural Product Research, 32(12): 1484–1488.

24. Park JE, Lee JS, Lee HA, and Han JS (2018): Portulaca oleracea L. Extract Enhances Glucose Uptake by Stimulating GLUT4 Translocation to the Plasma Membrane in 3T3-L1 Adipocytes. J Med Food, 2018: 1–7.

25. Parveen R, Agarwal NB, Kaushal N, Mali G and Raisuddin S (2015): Efficacy and safety of Canagliflozin in type 2 diabetes mellitus: systematic review of randomized controlled trials. Expert Opin Pharmacother., 9:1-11.

26. Ramadan BK, Schaalan MF and Tolba AM (2017): Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan-induced diabetic rats. BMC Complementary and Alternative Medicine, 17:37-38.

27. Sadeghi G, Karimi A, Shafeie F, Vaziry A and Farhadi D (2016): The Effects of purslane (Portulaca oleracea L.) powder on growth performance, carcass characteristics, antioxidant status, and blood metabolites in broiler chickens. Livestock Science, 184 (16): 35–40.

28. Szkudelski T (2001): The mechanism of alloxan and streptozotocin action in β cells of rat pancreas. Physiology Research Journal, 50: 536-546.

29. Yin L, Kenji A, Kiichiro U, Matsushita Y, Kuriyama C, Martin T, Du F, Liu Y, Xu J, Conway B, Conway J, Polidori D, Ways K and Demarest K (2012): Effect of Canagliflozin on Renal Threshold for Glucose, Glycemia, and Body Weight in Normal and Diabetic Animal Models. Plos One, 7 (2): 1-7.

30. Zurek AM, Yendapally R and Urteaga EM (2017): A Review of the Efficacy and Safety of Sodium–Glucose Cotransporter 2 Inhibitors: A Focus on Diabetic Ketoacidosis. Diabetes Spectr., 30(2): 137–142.



دراسة مقارنة لتأثیر الخلاصة المائیة لنبات البقلة (الرجلة) وعقار الکاناجلیفلوزین   (انفوکانا) علی مرض السکر المحدث بالألوکسان فی ذکور الجرذان البیضاء البالغة

عادل شلبی - جمال أحمد شـاور-حسـن صـبری علی الضـوی * - محمد عبد الحمید بسیونی **-محمد عثمان زَرَد

أقسام الفسیولوجیا الطبیة و الهستولوجیا * و الباثولوجیا الإکلینیکیة ** ، کلیة طب الأزهر

خلفیة البحث : مرض البول السکری هو الاضطراب الأکثر شیوعا للغدد الصماء, ورغم توفر العدید من الأدویة لا تزال الحاجة ملحة لأدویة جدیدة أقل اثاراً جانبیة , لذا فإن العقاقیر التی تعمل علی خفض الجلوکوز بدون الاعتماد علی تنشیط خلایا بیتا (مثل الکاناجلیفلوزین) و النباتات العشبیة مثل نبات البقلة ( الرجلة ) لها فعالیة عالیة فی التحکم فی نسبة السکر فی الدم مع آثار جانبیة ضئیلة.

الهدف من البحث: مقارنة تأثیر العلاج بالخلاصة المائیة لنبات الرجلة وعقار الکاناجلیفلوزین (إنفوکانا) علی مرض السکر المحدث بالألوکسان فی ذکور الفئران  البیضاء البالغة.

مواد والأسالیب: استخدم  فی هذا البحث ثمانون فأرا ذکرا أبیضا من السلالات المحلیة کنموذج للدراسة  .وقد قسمت الفئران إلی ثمان مجموعات متساویة:

المجموعة الأولى ( مجموعة ضابطة سلیمة ) والمجموعة الثانیة ( مجموعة ضابطة  مصابة بالسکری) تم إعطاؤهما محلول ملحی بالفم.

         وهناک ثلاث مجموعات مقارنة ( المجموعات 3و4 و5 ) تم إعطاؤها المستخلص المائی للرجلة بالفم ( بجرعة 250 مللی/کجم ) , أو عقار إنفوکانا  بالفم ( بجرعة 10 مللی/کجم ) , أو العقارین معا علی الترتیب ، وثلاث مجموعات من مرضى بالسکری ( المجموعات 6 و7و8 ) تم إعطاؤها نفس جرعات مجموعات المقارنة.

         و بعد 10 أسابیع من العلاج تم سحب عینات من الدم کما تم أخذ عینات من الکبد والکلی والبنکریاس للدراسة النسیجیة.

 

النتائج: تسبب حقن الألوکسان فی ارتفاع نسبة السکر وإنزیمات الکبد والدهون) عدا البروتین الدهنی عالی الکثافة) و نسبة البولینا وإنزیمات المضادة للأکسدة (عدا المالون دای الدهید) ارتفاعا ذو دلالة إحصائیة عند مقارنتها بالمجموعة الضابطة الأولی.

         أسفر العلاج بالإنفوکانا عن خفض مستوى الجلوکوز فی الدم بشکل ملحوظ أکثر من الرجلة  ، کما أوضحت العینات النسیجیة فی البنکریاس تحسنا ملحوظا فی خلایا البنکریاس التالفة والملتهبة بعد العلاج بالإنفوکانا  أو الرجلة  أو کلیهما.

         کما خفضت کل من الإنفوکانا و الرجلة من إنزیمات الکبد المرتفعة فی المجموعة المصابة بالسکری ولکن الرجلة  کانت أکثر تأثیرا ، کما أوضح العلاج بنبات الرجلة تحسن نسبة الدهون بالدم  فی الجرذان المصابة بداء السکری فی حین أن الإنفوکانا زادت البروتین الدهنی منخفض الکثافة (الکولیسترول السیء).  

         وقد أوضحت الدراسة أن نبات الرجلة له نشاط قوی مضاد للأکسدة ، بینما الإنفوکانا لم یثبت له تأثیر مضاد للأکسدة.

الاستنتاج: الکاناجلیفلوزین أکثر فاعلیة فی خفض نسبة السکر من نبات الرجلة ، کما أن کلا من نبات الرجلة وعقار الکاناجلیفلوزین لهما آثار وقائیة ضد إصابة الکبد الناجمة عن مرض السکری عن طریق خفض ارتفاع إنزیمات الکبد مع تفوق نبات الرجلة فی حمایة الکبد. و یمکن لنبات الرجلة تقلیل مضاعفات مرض السکری مثل فرط الدهون بالدم ، والإجهاد التأکسدی ، والقصور الکلوی ، و الالتهابات.

 

 

 

 

 

REFERENCES
1.  Adeyemi DO, Komolafa OA, Adewole OS, Obuotor EM, Abiodun AA and  Adenowo TK (2010):  Histomorphological and morphometric studies of the pancreatic islet cells of diabetic rats treated with extract of Annonamuricata. Folia Morphol., 69(2):92–100.
2.  Adeyi A, Idowu B, Mafiana C, Oluwalana S, Ajayi O and Akinloye O (2012): Rat model of food-induced non-obese-type 2 diabetes mellitus: comparative pathophysiology and histopathol-ogy. Intl J Physiol Pathophysiol Pharmacol., 1:51–8.
3.  Bai Y, Zang X, Ma J and Xu G (2016): Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats. Int. J. Mol. Sci., 17(8): 1201-14.
4.  Chaudhury A,  Duvoor C,  Dendi VS,  Kraleti S,  Chada A,  Ravilla R,  Marco A,  Shekhawat NS,  Montales MT,  Kuriakose K,  Sasapu A,  Beebe A,  Patil N,  Musham CK,  Lohani GP and  Mirza W (2017): Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Forst Management.,  Front Endocrinol (Lausanne), 17(8):1– 6.
5.  Chen L, Liu Y, Jia D, Yang J, Zhao J, Chen C, Liu H and Liang X (2016): Pharmacokinetics and biodistribution of aurantiamide and aurantiamide acetate in rats after oral administration of Portulaca oleracea L. extracts. J. Agric. Food Chem., 64: 3445-3455.
6.  El-Newary SA (2016): The hypolipidemic effect of Portulaca oleracea L. stem on hyperlipidemic Wister Albino rats. Annals of Agricultural Science, 61(1): 111–124.
7.  Etuk E and Muhammed B (2010): Evidence-based analysis of chemical method of induction of diabetes mellitus in experimental animals. Asian J Exp Biol., 1:331–6.
8.  Gautam A, Agrawal PK, Doneria J and Nigam A (2018): Effects of Canagliflozin on Abnormal Liver Function Tests in Patients of Type 2 Diabetes with Non-Alcoholic Fatty Liver Disease. Journal of The Association of Physicians of India, 66(1): 62-65.
9.  Ghara AR and Ghadi FE (2018): Effect of purslane on kidney failure following copper toxicity in a rat model. Iranian Journal of Health Sciences, 6(1): 25-32.
10. Ghorbani MR, Bojarpur M, Mayahi M, Fayazi J, Fatemitabatabaei R and Tabatabaei S (2013): Effect of purslane (Portulaca oleracea L.) on blood lipid concentration and antioxidant status of broiler chickens. Online J. Vet. Res., 17, 54–63.
11. Gong F and Li F (2009): Hypoglycemic Effects of Crude Polysaccharide from Purslane. Int. J. Mol. Sci., 10:880-8.
12. Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AA and Vernekar SN (2010): Markers of renal function tests. N Am J Med Sci., 2(4): 170–173.
13. Gu JF, Zheng ZY, Yuan JR, Zhao BJ, Wang CF, Zhang L, Xu QY, Yin GW, Feng L and  Jia XB (2015): Comparison on hypoglycemic and antioxidant activities of the fresh and dried Portulaca oleracea  L. in insulin-resistant HepG2 cells and streptozotocin-induced C57BL/6J diabetic mice. J Ethnopharmacol., 161:214-23.
14. Hadi A, Pourmasoumi M, Najafgholizadeh A, Kafeshani M and Sahebkar A (2018): Effect of purslane on blood lipids and glucose: A systematic review and meta‐analysis of randomized controlled trials. Phytotherapy Research, 18:1–10.
15. Heidarzadeh S, Farzanegi P, Azarbayjani MA and Daliri R (2013): Purslane Effect on GLP-1 and GLP-1 receptor in type 2 diabetes. Electronic Physician, 5(1): 582-87.
16. Iranshahy M, Javadi B, Iranshahi M, Jahanbakhsh SP, Mahyari S,  Hassani FV and Karimi G (2017): A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. J Ethnopharmacol., 9(205):158-172.
17. Kaveh M, Eidi A, Nemati A and Boskabady MH (2017): Modulation of lung inflammation and immune markers in asthmatic rats treated by Portulaca Oleracea. AJP, 7(5): 409-16.
18. Ketan H and Annapurna A (2014): The effect of quercetin on blood glucose levels of normal and streptozotocin induced diabetic (type i & type ii) rats. IJPCBS, 4(3):613–9.
19. Lee AS, Lee YJ, Lee SM, Yoon JJ, Kim JS, Kang DG and Lee HS (2012): An Aqueous Extract of Portulaca Oleracea Ameliorates Diabetic Nephropathy Through Suppression of Renal Fibrosis and Inflammation in Diabetic db/db. MiceThe American Journal of Chinese Medicine, 40 (3): 495–510.
20. Leiter LA, Forst T, Polidori D, Balis DA, Xie J and Sha S (2016): Effect of Canagliflozin on liver function tests in patients with type 2 diabetes. Diabetes Metab., 42 (1): 25-32.
21. Li B, Wang Y, Ye Z, Yang H, Cui X, Wang Z and Liu L (2018): Effects of Canagliflozin on Fatty Liver Indexes in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials, J Pharm Pharm Sci., 21(1):222-235.
22. Madkor HR, Mansour SW and Ramadan G (2011): Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin – nicotinamide diabetic rats. British Journal of Nutrition, 105: 1210-1217.
23. Nazeam JA, El-Hefnawy HM, Omran G and Singab A (2018): Chemical profile and antihyperlipidemic effect of Portulaca oleracea L. seeds in streptozotocininduced diabetic rats. Natural Product Research, 32(12): 1484–1488.
24. Park JE, Lee JS, Lee HA, and Han JS (2018): Portulaca oleracea L. Extract Enhances Glucose Uptake by Stimulating GLUT4 Translocation to the Plasma Membrane in 3T3-L1 Adipocytes. J Med Food, 2018: 1–7.
25. Parveen R, Agarwal NB, Kaushal N, Mali G and Raisuddin S (2015): Efficacy and safety of Canagliflozin in type 2 diabetes mellitus: systematic review of randomized controlled trials. Expert Opin Pharmacother., 9:1-11.
26. Ramadan BK, Schaalan MF and Tolba AM (2017): Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan-induced diabetic rats. BMC Complementary and Alternative Medicine, 17:37-38.
27. Sadeghi G, Karimi A, Shafeie F, Vaziry A and Farhadi D (2016): The Effects of purslane (Portulaca oleracea L.) powder on growth performance, carcass characteristics, antioxidant status, and blood metabolites in broiler chickens. Livestock Science, 184 (16): 35–40.
28. Szkudelski T (2001): The mechanism of alloxan and streptozotocin action in β cells of rat pancreas. Physiology Research Journal, 50: 536-546.
29. Yin L, Kenji A, Kiichiro U, Matsushita Y, Kuriyama C, Martin T, Du F, Liu Y, Xu J, Conway B, Conway J, Polidori D, Ways K and Demarest K (2012): Effect of Canagliflozin on Renal Threshold for Glucose, Glycemia, and Body Weight in Normal and Diabetic Animal Models. Plos One, 7 (2): 1-7.
30. Zurek AM, Yendapally R and Urteaga EM (2017): A Review of the Efficacy and Safety of Sodium–Glucose Cotransporter 2 Inhibitors: A Focus on Diabetic Ketoacidosis. Diabetes Spectr., 30(2): 137–142.