ASSESSMENT OF ACTIVE SHOULDER ROTATION AFTER TENDON TRANSFER AROUND THE SHOULDER IN CASES OF RESIDUAL BRACHIAL PLEXUS INJURY

By

Abd El-Hakim Abd Allah Massoud, Amro A. Fouaad, Ahmed Mohammed Rashad Donia

Hand & Microsurgery Unit, Department of Orthopaedic Surgery, Faculty of Medicine, Al-Azhar University

Corresponding author: Ahmed Mohammed Rashad Donia, Mobile: 01148875651

Email: ahmeddonia5@gmail.com

We hypothesize that tendon transfer around the shoulder in patients with brachial plexus injury improves shoulder function specifically external rotation which may affect shoulder internal rotation.

ABSTRACT

Background: Active range of motion were analyzed as the outcomes of tendon transfer around the shoulder in children who had internal rotation contracture deformities secondary to obstetric brachial plexus palsy (OBPP) to improve the shoulder external rotation. Regarding to importance of external rotation there was some limitation of internal rotation which can affect patient’s daily activities.

Methods: 50 patients with brachial plexus injury who underwent tendon transfer (teres major or latissimus dorsi) with or without anterior shoulder release in two separate incisions. Coracohumeral ligament release and Subscapularis release were done for all patients through anterior incision. A separate second incision in the posterior axillary fold was carried out to perform rerouting of the teres major or latissimus dorsi tendon.

Results: The average active external rotation in abduction increased from 23.5º preoperatively to 76.4º postoperatively. The average active external rotation in adduction increased from 9.6º to 77.5º. The average shoulder abduction increased from 74.5º to 142.6º. Active internal rotation was analyzed just after operation, 6 month after and one year after. There was limited active IR in adduction from 10º to 50º with mean average 28.21º and improvement gradually with physiotherapy.

Conclusions: Anterior shoulder release combined with latissimus dorsi or teres major rerouting significantly improved global shoulder function, but with limitations of active internal rotation which improving significantly with physiotherapy.

Keywords: Brachial Plexus Injury - Birth Palsy - Tendon Transfer.

INTRODUCTION

Infant birth weight and the regional obstetric care are the main causes of incidence of brachial plexus birth palsy (BPBP). An epidemiological study reveals an incidence in USA around 0.15 % (Abid, 2016), whereas incidence in Finland refers to 0.31% (Poyhia et al., 2010). Furthermore, the risk of injury of the brachial plexus is five times higher in breech delivery and may be bilateral (Chomiak et al., 2014).
Narakas’ categorisation is used according to location and severity of the plexus lesion: Group 1, the upper plexus lesion (C5-6, Erb’s palsy), with an incidence of 73% represents, the prognosis is so good reported 75-95% improvement. Group 2 comprises patients with C5-6 and C7 (extended Erb’s palsy) involvement, the prognosis is poorer than for group 1 patients. Groups 3 and 4, with the lesion of the entire plexus (C5-T1), flail upper limb (Whole extremity), with or without Horner’s syndrome with an incidence of 25%, this type having the worst prognosis. Physiotherapy with passive exercises used as initial treatment to prevent joint contractures and strengthen the recovering muscles (Chomiak et al., 2014).

Incomplete recoveries in C5-C6 and C5-C7 palsies lead to soft tissue imbalance (strong internal rotators lead to contracture of the internal rotators (pectoralis major, subscapularis, latissimus dorsi and teres major muscles) and weak external rotators and abductors. Bony changes as (Scapular winging, changes in coracoid process, humeral head flattening and glenoid deformity with possible glenohumeral joint posterior dislocation may be affected and causing increasing shoulder deformity (Shah and Ganjwala, 2018). Active external rotation is crucial for upper-extremity function. Therefore, restoring external rotation in combination with shoulder abduction is generally recommended (Hale et al., 2010 and Chomiak et al., 2014).

In congruent glenohumeral joints, muscle release and transfer are indicated. Latissimus dorsi or teres major tendon transfer to rotator cuff is a common procedure (Aydin et al., 2011). We prefer to transfer these muscles to the lateral side of the proximal humrus to restore active external rotation, together with lengthening the pectoralis major and subscapularis muscles (Julka and Vander Have, 2011). The amount of external rotation increases with increased rotation strength and the amount of abduction increases with greater efficacy of the deltoid muscle. Once the imbalance between Muscle forces of the shoulder joint is restored in the early period, the glenohumeral joint undergoes remodeling (Neumann, 2013). The congruity of the glenohumeral joint is the key for release and transfer even at 4 to 10 years of age (Ozturk et al., 2010).

The aim of this study was to evaluate the active shoulder range of motion abduction, external rotation, internal rotation and effect of limited internal rotation on daily activity, in patients 2 to 13 years of age after latissimus dorsi or teres major tendon transfer to the rotator cuff with Coracohumeral release with or without anterior structure release.

PATIENTS AND METHODS

This is a prospective retrospective study involving 50 patients underwent surgical treatment between 2014 and 2018 for loss of external rotation and abduction as well as internal rotation contracture of the shoulder secondary to OBPP. Of these patients, 10 patients were lost follow up and 40 cases with forward follow up, 31 of them had upper lesion (C5-6), 5 had (C5-7) with elbow involvement, and 4 had complete plexus involvement (C5-T1) wrist, and hand were involved. The mean operation age was 4.71 years (range 2 to 13 years). There were 17 males (42.5%)
and 23 females (57.5%). 22 patients (55%) had right side involvement and 18 patients (45%) had left side involvement.

The patients presented with their parents complaints of being unable to use the involved extremity in their daily activities (to eat, hair brush and drink) due to loss of external rotation and abduction accompanying the internal rotation deformity. By examination there is limited or loss of external rotation and abduction accompanying the internal rotation deformity. Latissimus dorsi, teres major and deltoid muscles were assessed preoperatively. The pre and postoperative range of motion values were measured and their motor functions were evaluated with the Mallet scoring system (Waters and Peljovich, 1999). The mean preoperative active abduction was 74.5° and the mean active external rotation in abduction was 23.5° and external rotation in adduction was 9.6°. Tendon transfer was performed in patients with sufficient deltoid muscle strength (M3-M4 according to the British Medical Research Council grading system) (Hoffer et al., 1978).

During preoperative planning, bilateral antero-posterior and or axillary direct radiographs of the shoulder were obtained. To evaluate the glenohumeral joint, magnetic resonance imaging (MRI) was performed in patients who had some shoulder deformity, and computed tomography (CT) was performed in 20 patients who were beyond 4 years of age.

Surgical procedure: Anterior shoulder release was done in 38 patients through deltopectoral incision by coracohumeral ligament release and musculotendinous lengthening of the subscapularis and/or pectoralis major then teres major was transferred in 31 (77.5%) patients and latissimus dorsi in 9 patients (22.5%) to the rotator cuff through posterior axillary incision (modification to Hoffer technique (Hoffer et al., 1978). After closing surgical incisions a shoulder spica were used to secure the shoulder in maximum abduction and external rotation, and the elbow in 70° flexion.

Following its full-day use for 6 to 8 weeks, an exercise program was initiated in the gravity-eliminated position without allowing any antagonist activity 2 weeks after cast removal followed by gentle strengthening exercises and light functional use between weeks 8 and 10. Stretching exercises were initiated after week 12, and the use of extremity was encouraged in daily activities associated with nocturnal splint. The mean follow-up period was (19.8) months (range 8 to 40 months).

Statistical analysis:

The data obtained from the patients were statistically evaluated by the paired samples test using the SPSS 15.0 software.
RESULTS

At final evaluations, with mean cast duration (1.56) months post-operatively, and mean follow up 19.8 months (8 to 40), and night splint was used in 8 patients (20%) for minimum 4 months, there was improvement of abduction from 74.5° to 142.6° (mean improvement 68.13°), highly significant improvement, external rotation in abduction increased from 23.5° to 76.4° (mean improvement 52.9°), and improvement of external rotation in adduction from 9.6° to 77.5° (mean improvement 67.88°). Improvements in the degrees of abduction and external rotation showed significant difference ($p<0.001$ - Table 1).

Table (1): Comparison between pre-operative and post-operative Abd, ER in Abd and ER in Add

<table>
<thead>
<tr>
<th>Variables</th>
<th>Groups</th>
<th>Pre-operative (N = 40)</th>
<th>Post-operative (N = 40)</th>
<th>Improvement</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abd</td>
<td>Mean</td>
<td>74.5</td>
<td>142.6</td>
<td>68.13</td>
<td>< 0.001*</td>
</tr>
<tr>
<td></td>
<td>±SD</td>
<td>25.01</td>
<td>29.1</td>
<td>4.77</td>
<td></td>
</tr>
<tr>
<td>ER in Abd</td>
<td>Mean</td>
<td>23.5</td>
<td>76.4</td>
<td>52.90</td>
<td>< 0.001*</td>
</tr>
<tr>
<td></td>
<td>±SD</td>
<td>20.7</td>
<td>18.5</td>
<td>2.22</td>
<td></td>
</tr>
<tr>
<td>ER in Add</td>
<td>Mean</td>
<td>9.6</td>
<td>77.5</td>
<td>67.88</td>
<td>< 0.001*</td>
</tr>
<tr>
<td></td>
<td>±SD</td>
<td>11.5</td>
<td>14.1</td>
<td>2.62</td>
<td></td>
</tr>
</tbody>
</table>

In this study, we were proposing to follow up patient active internal rotation after one month of cast removal and its effect on patient daily activity, there was no limitation in 12 pts. (30%), 10° limitation in one patient (2.5%), 20° limitation in 10 pts. (25%), 30° limitation in 11 pts. (27.5%), 40° limitation in 5 pts. (12.5%), and in 1 patient (2.5%) there was 50° limited internal rotation. All patient with limited active internal rotation suffering to use their hand in many things like putting the hand inside there trouser bag, wearing clothes and hygiene (Table 2).

Table (2): Description of limited IR in studied patients

<table>
<thead>
<tr>
<th>Variables</th>
<th>Degree</th>
<th>Studied patients (N = 40)</th>
<th>Statistical analysis</th>
<th>Studied patients (N = 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited IR</td>
<td>(10)</td>
<td>1 (2.5%)</td>
<td>Mean</td>
<td>28.21</td>
</tr>
<tr>
<td></td>
<td>(20)</td>
<td>10 (25%)</td>
<td>±SD</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>(30)</td>
<td>11 (27.5%)</td>
<td>Min</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(40)</td>
<td>5 (12.5%)</td>
<td>Max</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>(50)</td>
<td>1 (2.5%)</td>
<td>Range</td>
<td>(10 – 50)</td>
</tr>
<tr>
<td>No limitation</td>
<td>12 (30%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The mean improvement in abduction was (138.25°) and (147°), and the mean external rotation in abduction improved (76.5°) and (79°), and the mean improvement of external rotation in adduction was (75.75°) and (79.25°) in patients ≤4 years and >4 years of age, respectively. Changes in abduction and external rotation were not significant between patients ≤4 years and >4 years of age ($p>0.05$ - Table 3).
Table (3): Comparison between post-operative data as regard age

<table>
<thead>
<tr>
<th>Variables</th>
<th>Age</th>
<th>≤ 4 years</th>
<th>> 4 years</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abd</td>
<td>Mean</td>
<td>138.25</td>
<td>147.00</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>±SD</td>
<td>27.78</td>
<td>30.50</td>
<td></td>
</tr>
<tr>
<td>ER in Abd</td>
<td>Mean</td>
<td>76.50</td>
<td>79.00</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>±SD</td>
<td>15.90</td>
<td>14.10</td>
<td></td>
</tr>
<tr>
<td>IR in Abd</td>
<td>Mean</td>
<td>58.00</td>
<td>61.00</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>±SD</td>
<td>14.64</td>
<td>15.86</td>
<td></td>
</tr>
<tr>
<td>ER in Add</td>
<td>Mean</td>
<td>75.75</td>
<td>79.25</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>±SD</td>
<td>12.06</td>
<td>16.08</td>
<td></td>
</tr>
<tr>
<td>IR in Add</td>
<td>Mean</td>
<td>69.00</td>
<td>72.00</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>±SD</td>
<td>15.18</td>
<td>15.08</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

In cases of obstetric brachial plexus sequel, the deformity of the shoulder joint and loss of function are the most important problems. The development of this deformity impedes daily activities required for body care such as moving the hand over the head and shoulder, or behind the head. It has been shown in MRI studies that patients older than three months develop secondary deformities such as biconcavity, glenoid convexity, and humeral head subluxation after five months of obstetrical brachial plexus injuries. Arthroscopy, arthrography and MRI have shown that glenohumeral joint deformity occurs before the age of one year in patients with internal rotation contracture (Ozturk et al., 2010). This results from the impaired muscle balance (the internal rotators, maintaining their strength, and external rotators, loosening their strength (Andrés-Cano et al., 2015)). Initial paralysis or late recovery of the external rotators results in shortening of the dominant subscapularis muscle fibers along with increased stiffness and contracture. The fixed internal rotation position of the shoulder has a negative impact on the anatomic structure and development of the glenohumeral joint (Olofsson et al., 2019). Progression in muscle imbalance results in permanent deformities such as glenoid dysplasia, deformation, humeral head subluxation, and posterior dislocation (Cornwall, 2013).

Glenohumeral joint remodeling and glenoid version improvement were achieved by early tendon transfer and musculotendinous lengthening (Cornwall, 2013 and Abzug & Kozin, 2014).

Zancolli has a method of muscle rerouting and released the pectoralis major from humeral insertion and sutured it distal to the subscapularis for the treatment of internal rotation contracture. To increase the external rotation, he rotated the latissimus dorsi tendon that was lengthened 10 cm with Z-plasty, from the lateral to the posterior of the humerus and sutured it again onto itself in full external rotation and 90° of abduction. As a result, he obtained 45° active external rotation and 50° active abduction (Terzis and Kostopoulos, 2010).
Covey et al separate the tendinous part of the latissimus dorsi, re-routed the distal end of it to the posterior aspect of the humerus, and anastomosed it to the conjoined tendons of the latissimus dorsi and teres major. Of 19 patients, 14 patients had increases of 26° and 29° in abduction and external rotation respectively, but five did not benefit from the procedure (Odeh and Odeh, 2015).

For the treatment of internal rotation contracture, Gilbert et al recommended open release for children less than 4 years of age if the congruity of the glenohumeral joint and roundness of the humeral head were preserved, they recommended latissimus dorsi transfer in addition to release of the contracture in children greater than 4 years of age (Ozturk et al., 2010). The most popular salvage surgical procedure around the shoulder is the L’Episcopo procedure and its modifications. The modification by Hoffer et al used in our study includes musculotendinous lengthening of the subscapularis and/or pectoralis major, with coracohumeral ligament release as the first step, and transfer of the teres major or latissimus dorsi tendons to the rotator cuff in order to strengthen the paralyzed external rotators. This results in not only increased active external rotation, but also increased abduction because of increases in the stabilizing effect of the rotator cuff and the efficacy of the deltoid muscle. Hoffer et al reported the mean improvements as 64° in abduction and 45° in external rotation in 11 patients (Romeith et al., 2015).

In our study, the mean gain was 68.13° in abduction, external rotation in abduction was 52.9° and external rotation in adduction gain 67.88°. There was no significant difference between age <or> 4 years old with respect to abduction gain between the two age groups. In patient with preoperative abduction > 90°, we believe that no additional tendon transfer is necessary as an efficient outcome is already obtained with release of the internal rotators. Surgery between ages 2 to 5 years is the best time to achieve muscle balance and to prevent deformities (Hale et al., 2010). As regarding the surgery time, Ozturk et al. (2010) suggested that the most convenient age range for salvage surgery of soft tissues was 4 to 10 years and Andrés-Cano et al. (2015) concluded that the clinical results were related with the type of paralysis and preoperative shoulder functions, but not with age.

In our series with an average age of 4.71 years (from 2 to 13 years) the severity of bone and joint deformities was minimal. We believe that tendon transfer and release surgery of internal rotators in patients with no or minimal joint contracture and osseous deformity can be performed regardless of age.

In this technique which allows restoration of external rotation as well as global abduction, loss of internal rotation is seen especially in patients who undergo release surgery together with tendon transfer. The degree of this loss can be usually reduced by physical therapy (Ozben et al., 2011).

In our cases, loss of internal rotation presented as decreased the ability to move the hand to the back. The patients complain of some limitation during their daily activities, to wear trousers or put hand in trousers pocket. This loss was
statistically significant, additional therapy was considered as physiotherapy extrinsic and stretching exercise to transferred muscle. Despite this loss in internal rotation, the quality of life was highly improved in our cases due to significant increases in the ability to move the hand to neck and mouth.

There is no consensus in the literature as to the transfer site and fixation method of the tendon. In the L’Episcopo procedure, the tendon is passed posterior to the lateral of the humerus behind the long head of the conjoined triceps, and fixed with a surgical stapler or screw, or sutured on to the removed periosteal flap (Bertelli, 2011). In the modification of Hoffer et al (Bahm, 2016), the combined tendon is fixed to anterosuperior of the rotator cuff by non-absorbable 2/0 sutures. In a study of 10 patients, Ozturk et al. (2010) fixed the conjoined tendon onto the infraspinatus tendon with a 2/0 Ethibond suture and obtained a mean postoperative abduction of 134.5° and ER of 70°. As reported by Bertelli (2009), he preferred to fix the conjoined tendon to the greater tubercle by a suture anchor and sutured it to infraspinatus tendon and he reported the increases as 60.3° in abduction and 58.7° in ER in 70 patients.

In our patients, gains in abduction and ER were 68.13° and 52.9°, respectively. Limited IR in patients, which improved significantly with physiotherapy. Bertelli (2011) performed transfer of the lower part of the trapezius muscle to the infraspinatus and Z-plasty lengthening of the subscapularis and/or pectoralis major with transfer of teres major or latissimus dorsi tendons to the rotator cuff in cases of limited abduction and external rotation secondary to obstetric brachial plexus palsy provides satisfactory degrees of abduction and external rotation, regardless of age, in patients with no or minimal impairment in congruity of glenohumeral joint. Close Follow up active physiotherapy is recommended to improve postoperative internal rotation contracture.

CONCLUSION

Coracohumeral ligament release and musculotendinous lengthening of the subscapularis and/or pectoralis major with transfer of teres major or latissimus dorsi tendons to the rotator cuff in cases of limited abduction and external rotation secondary to obstetric brachial plexus palsy provides satisfactory degrees of abduction and external rotation, regardless of age, in patients with no or minimal impairment in congruity of glenohumeral joint. Close Follow up active physiotherapy is recommended to improve postoperative internal rotation contracture.

REFERENCES

تقييم الدوران النشط للكتف بعد عملية نقل الأوتار في حالات إصابات الضفيرة العصبية المهملة

عبدالحكيم عبدالله مسعود، عمرو أحمد فؤاد، أحمد محمد رشاد
قسم جراحة العظام، كلية الطب، جامعة الأزهر

خلفية البحث: يحدث شلل الضفيرة العضدية نتيجة الشد على الضفيرة العضدية خلال عملية الولادة المتعسة. وتشهد الإعاقة هي في الأساس عبارة عن تقلص دوراتي داخلي للكتف، وتشهد نتيجة لصحتي النواز العضلي بين الدورات الداخلية النشطة والمدورات الخارجية المشلولة.

الهدف من البحث: تقييم الحركة النشطة للكتف بعد عملية نقل أوتار العضلة المدورة الكبيرة والعضلة الظهرية العريضة إلى الكفية المدورة لمفصل الكتف.

المريضى وطرق البحث: هذه الدراسة تضمنت على 40 مريضًا مصابًا بشلل الضفيرة العضدية، الذين خضعوا لإجراء عملية نقل أوتار العضلة المدورة الكبيرة أو العضلة الظهرية العريضة مع أو بدون التحرير الأمامي للفصل الكنجع بطريقة هوا. وفي هذه الدراسة تم تقييم المرضى لتجاوز درجة رفع الذراع والدوران الخارجي للكتف بعد 6 أشهر على الأقل من العملية.

نتائج البحث: في هذه الدراسة كان متوسط عمر الأطفال في وقت إجراء الجراحة 4,71 سنة، وكان متوسط فترة المتابعة بعد إجراء الجراحة 19,8 شهرًا تتراوح بين 8 شهر و 40 شهرًا.

وبعد إجراء الجراحة تحسن متوسط درجة رفع الذراع على مستوى الکتف من 74,5 درجة إلى 142,6 درجة ، كما تحسن متوسط درجة الدوران الخارجي للکتف والذراع بعيد عن الجسم من 74,6 درجة إلى 76,4 درجة ، كما تحسن متوسط درجة الدوران الخارجي للكتف والذراع قريب للجسم من 9,6 درجة إلى 9,77, درجة.

وهذا يعني أن التحسن في مستوى رفع الذراع والتحسين في الدوران الخارجي للكتف بعد إجراء الجراحة ذو دلالة إحصائية جيدة.
ASSESSMENT OF ACTIVE SHOULDER ROTATION AFTER TENDON...