EFFECT OF VITAMIN E ON THE PROGRESSION OF RENAL ISCHEMIA REPERFUSION INJURY IN FEMALE RATS

By
Nehal M. B. Gamil, Soha M.Y. Mohamed, Doaa A. Abou-Bakr
and Basant S. M. Elsaid

Department of Physiology, Faculty of Medicine, Ain Shams University

ABSTRACT

Background: Acute kidney injury (AKI) is a common worldwide disorder that is associated with high morbidity and mortality. Its pathophysiology is complex including a triad of oxidative tissue damage, inflammation and activation of clotting cascade.

Objective: Investigating the outcome of vitamin E acetate administration immediately after the induction of renal ischemia/reperfusion injury on its progression.

Materials and Methods: The present study was carried out on 48 adult female Wister rats, weighing 185-250 grams, randomly allocated into the following 3 groups: Sham-operated group (SHAM; n=18), renal ischemia/reperfusion injury group (RIR; n=20), and renal ischemia/reperfusion injury group treated with Vitamin E Acetate (RIRttt; n=10). Rats were subjected to measurement of initial and final body weights (IBW, FBW), absolute and relative kidney weights (AKW, RKW), serum level of urea and creatinine as renal function tests, prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrin degradation products (FDPs) as markers of blood coagulation, C-reactive protein (CRP) as an inflammatory marker, as well as plasma and renal tissue malondiadehyde (MDAp, MDAp) as oxidative stress markers, in addition to histopathological study of the kidney tissue.

Results: RIR rat group showed significant increase in AKW, RKW, as well as serum levels of urea and creatinine compared to sham operated group, but there was no significant change in their PT, APTT, FDPs, CRP, MDAp, and MDA, compared to the sham operated group. RIRttt rat group exhibited insignificant changes in their AKW, RKW, serum urea, creatinine, PT, APTT, FDPs, CRP, MDAp, and MDA, compared to RIR. Histopathological study of RIR rat kidneys showed glomerular congestion with periglomerular edema and atrophy of some glomeruli as well as cystic tubular dilation with esinophilic cast with tubular epithelial necrobiosis, and these changes were not improved by vitamin E treatment in RIRttt rat kidneys.

Conclusion: Vitamin E acetate administration in a single dose of 1000 mg/kg B.W. immediately after induction of RIR could not interfere with the progression of AKI as proved by the non significant changes in kidney function tests and histopathological picture.

Key words: AKI, RIR, blood coagulation, oxidative stress, inflammation and Vitamin E.

INTRODUCTION

Ischemia/reperfusion (IR) represents the most frequent cause of AKI (Arfian et al., 2012). The kidney is vulnerable to IR injury during a number of clinically important conditions including hypotension, sepsis and surgical procedures such as partial nephrectomy, cardiac bypass...
surgery, as well as during kidney transplantation (Simmons et al., 2008). Renal ischemia reperfusion (RIR) indicates restriction of blood supply to the kidney followed by restoration of blood flow and reoxygenation (Malek and Nematbakhsh, 2015). This could cause significant tissue damage and loss of cell viability and functionality due to necrotic, necroptotic, apoptotic, and autophagic mechanisms (Kalogeris et al., 2012). Oxidative tissue damage, inflammation and activation of clotting cascade are closely related pathophysiological pathways that form a triad that establishes a fastened positive feedback mechanism that ends by terminating the life of the patient (Petj?, 2011 and Sureshbabu et al., 2015). Being the cornerstone of AKI pathophysiology, oxidative stress was targeted by antioxidants to disrupt the positive feedback interactions between oxidative damage, inflammation and coagulation (Duffy et al., 2014). Thus, it was intriguing to investigate the outcome of vitamin E acetate administration immediately after the induction of ischemia/reperfusion kidney injury.

MATERIALS AND METHODS

The present study was approved by the Ethics Committee under Federal Wide Assurance No. FWA 00017585

Experimental animals: This study was carried out on 48 adult female Wister rats, weighing 185-250 grams. Rats were purchased from the Modern Veterinary Office, Al-Haram, Giza, and were maintained in the Physiology Department Animal House, Faculty of Medicine, Ain Shams University under standard conditions of boarding at room temperature. Rats were kept in plastic cages of 39cm x29cm x18cm dimensions (3-5 rats /cage) for 10 days for acclimation. Rats were fed ad libitum the regular rat chow. Meals were introduced daily at 8 am, with free access to water.

Experimental protocol: After the acclimation period, rats were allocated into the following groups: Group I: Sham-operated rat group (SHAM; n=18): These rats underwent surgical procedure identical to those of renal ischemia/reperfusion group (RIR) except that clamps were not applied to the renal pedicle. These rats received a single intraperitoneal (i.p.) injection of sesame oil. Group II: Bilateral renal ischemia/reperfusion injury rat group (RIR; n=20): These rats’ renal pedicles were clamped bilaterally for 45 min, then reperfused and immediately received a single i.p. injection of sesame oil according to Malek and Nematbakhsh (2014). Group III: Renal ischemia/reperfusion injury rat group treated with Vitamin E Acetate (RIR; n=10): These rats’ renal pedicles were clamped bilaterally for 45 min, then reperfused and immediately received a single i.p. injection of vitamin E acetate dissolved in sesame oil in a dose of 1000 mg/kg B.W. according to Nazro?lu et al. (2004), immediately after induction of RIR.

All rats were subjected to measurement of initial body weight (IBW, g), final body weight (FBW, g) and calculation of body weight gain [BWG, g] and percent weight gain (%BWG, %).

Experimental Procedures: All rat groups were sacrificed 24 hours after the surgical intervention. On the day of sacrifice, the overnight fasted rats with free access
to water, were weighed and anesthetized by i.p. injection of thiopental sodium (EPICO, Egypt) in a dose of 40 mg/kg B.W. (Flecknell, 1998). When the stage of surgical anesthesia had been reached as judged by loss of withdrawal reflex, the animal was placed on its back and fixed on the dissecting board. A midline abdominal incision was made to explore the abdominal aorta followed by its cannulation with polyethylene catheter and the blood was collected into 2 separate test tubes; one citrated glass tube that was centrifuged at 2500 RPM (revolutions per minute) for 15 min using Hettich EBA 8s centrifuge to obtain platelet poor plasma (PPP) to be used within 4 hours to determine Prothrombin time (PT) according to Loeliger (1984) using phosphoplasm RL kits (ISI number 1.04) supplied by r² DIAGNOSTICS, South Bend, Indiana; activated partial thromboplastin time (APTT) according to Brandt and Triplett (1981) by using Phospholin ES kits supplied by r² DIAGNOSTICS, South Bend, Indiana. Part of the plasma sample was stored at -80°C for later determination of tissue Malondialdehyde level (MDAₜ) according to the technique of Esterbauer and Cheeseman (1990) using thiobarbituric acid test, while right kidney immediately was fixed in 10% formalin, then was embedded in paraffin and tissue sections of 5 μm were obtained and stained with hematoxylin and eosin (H&E) for histopathological examination using light microscope according to Adnan et al. (2013).

Statistical Analysis: Data were expressed as means ± SEM. Statistical significance of data was determined according to One way ANOVA (Analysis of variance) followed by post-hoc test (LSD). Chi square test was used for qualitative data analysis. Statistical analysis was performed by using SPSS (version 24). A probability of P < 0.05 was considered statistically significant. Body weight gain (BWG) was calculated by subtracting the FBW from the IBW. % BWG was calculated by dividing BWG by IBW. RKW was calculated by dividing KW by FBW.
RESULTS

IBW, FBW, BWG and % BWG were not significantly different among the three studied rat groups. As regard kidney weights, RIR group showed significant increase (P< 0.002 and 0.001 respectively) in absolute and relative kidney weights compared to SHAM group. RIR treated group showed no significant difference in either absolute or relative kidney weight compared to RIR rat group, although they showed significant increase (P< 0.05 and 0.02 respectively) compared to SHAM group (Table 1).

Prothrombin time (PT), activated partial thromboplastin time (APTT) and the plasma fibrin degradation products (FDPs) levels were non-significantly different in the three studied groups (Table 2).

Serum urea and creatinine significantly increased (P<0.001 and 0.02 respectively) in RIR group compared to SHAM group. RIR treated group had insignificant change in the level of serum urea and creatinine compared to RIR rats, and significantly increased (P< 0.01 and 0.001 respectively) compared to SHAM group. There was no significant difference in serum C-reactive protein (CRP), plasma malondialdehyde (MDA_p) and renal tissue malondialdehyde (MDA_t) among the three studied rat groups (Table 3).

Normal renal architecture was shown in fig. (1). Histopathological study of RIR rat kidneys revealed congestion of glomerular tuft with perivascular edema and atrophy of other glomerular tuft as well as tubular cystic dilation with intraluminal eosinophilic renal cast and necrobiosis of its epithelial lining (Fig. 2). These changes were also observed in RIR treated (Fig. 3).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>IBW (gm)</th>
<th>FBW (gm)</th>
<th>BWG (gm)</th>
<th>%BWG (%)</th>
<th>AKW (gm)</th>
<th>RKW</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAM</td>
<td>212.22±4.13</td>
<td>208.61±3.72</td>
<td>-3.61±1.89</td>
<td>-1.59±0.90</td>
<td>1.10±0.03</td>
<td>0.53±0.01</td>
</tr>
<tr>
<td>RIR</td>
<td>218.00±4.21</td>
<td>215.50±4.91</td>
<td>-2.50±2.04</td>
<td>-1.20±0.93</td>
<td>1.28±0.04</td>
<td>0.60±0.01</td>
</tr>
<tr>
<td>P</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td><0.002</td>
<td><0.001</td>
</tr>
<tr>
<td>RIRtt</td>
<td>216.00±6.57</td>
<td>219.50±8.90</td>
<td>3.50±3.73</td>
<td>1.42±1.65</td>
<td>1.43±0.08</td>
<td>0.65±0.03</td>
</tr>
<tr>
<td>P</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>P1</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td><0.05</td>
<td><0.02</td>
</tr>
</tbody>
</table>

Values were expressed as mean ± SEM. In parenthesis is the number of rats.
P: Significance from sham-operated group.
P1: Significance from RIR group.
NS: Non-significant.
EFFECT OF VITAMIN E ON THE PROGRESSION OF RENAL ISCHEMIA...

Table (2): Prothrombin time (PT, sec), activated partial thromboplastin time (APTT, sec) and fibrin degradation products (FDPs, µg/ml) in the 3 studied groups.

<table>
<thead>
<tr>
<th>Rat groups</th>
<th>Parameters</th>
<th>PT (sec)</th>
<th>APTT (sec)</th>
<th>FDPs (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>SHAM</td>
<td></td>
<td>15.06</td>
<td>23.28</td>
<td>100%</td>
</tr>
<tr>
<td>(18)</td>
<td>±0.54</td>
<td>±0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIR</td>
<td></td>
<td>15.60</td>
<td>22.37</td>
<td>100%</td>
</tr>
<tr>
<td>(20)</td>
<td>±0.56</td>
<td>±0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>P*</td>
<td></td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>RIR<sub>tt</sub></td>
<td></td>
<td>14.80</td>
<td>23.20</td>
<td>100%</td>
</tr>
<tr>
<td>(10)</td>
<td>±0.79</td>
<td>±1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<sub>1</sub></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>P<sub>1</sub>*</td>
<td></td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

Values were expressed as mean ± SEM. In parenthesis is the number of rats.
P: Significance from sham-operated group.
P₁: Significance from RIR group.
P₁*: Significance from sham-operated group.
P₁*: Significance from RIR group.
NS: Non-significant.

Table (3): Serum urea (urea, mg/dl), serum creatinine (creatinine, mg/dl), serum C-reactive protein (CRP, mg/l), plasma malondialdehyde (MDAp, µmol/l) and renal tissue malondialdehyde (MDAt, µmol/gm wet tissue) in the 3 studied groups.

<table>
<thead>
<tr>
<th>Rat groups</th>
<th>Parameters</th>
<th>Urea (mg/dl)</th>
<th>Creatinine (mg/dl)</th>
<th>CRP (mg/l)</th>
<th>MDA<sub>p</sub> (µmol/l)</th>
<th>MDA<sub>t</sub> (µmol/gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAM</td>
<td></td>
<td>33.75</td>
<td>1.19</td>
<td>2.87</td>
<td>1.46</td>
<td>1.90</td>
</tr>
<tr>
<td>(18)</td>
<td></td>
<td>±4.07</td>
<td>±0.11</td>
<td>±0.25</td>
<td>±0.07</td>
<td>±0.11</td>
</tr>
<tr>
<td>RIR</td>
<td></td>
<td>130.77</td>
<td>2.25</td>
<td>2.28</td>
<td>1.38</td>
<td>1.69</td>
</tr>
<tr>
<td>(20)</td>
<td></td>
<td>±21.40</td>
<td>±0.24</td>
<td>±0.20</td>
<td>±0.05</td>
<td>±0.10</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td><0.001</td>
<td><0.02</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>RIR<sub>tt</sub></td>
<td></td>
<td>117.50</td>
<td>3.19</td>
<td>2.26</td>
<td>1.33</td>
<td>1.55</td>
</tr>
<tr>
<td>(10)</td>
<td></td>
<td>±19.03</td>
<td>±0.58</td>
<td>±0.26</td>
<td>±0.09</td>
<td>±0.17</td>
</tr>
<tr>
<td>P<sub>1</sub></td>
<td></td>
<td><0.01</td>
<td><0.001</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>P<sub>1</sub>*</td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Values were expressed as mean ± SEM. In parenthesis is the number of rats.
P: Significance from sham-operated group.
P₁: Significance from RIR group.
NS: Non-significant.
Figure (1): Kidney of sham-operated rat group showing the normal histological structure of renal parenchyma (H&E X 400).

Figure (2): Kidney of RIR rat group showing (a) cystic dilation of renal tubules and intraluminal eosinophilic renal cast (b) congestion of glomerular tuft and perivascular edema (c) atrophy of glomerular tuft (d) necrobiosis of epithelial lining of some renal tubules (H & E X 400).

Figure (3): Kidney of RIR treated rat group with Vit. E Acetate showing (a) intraluminal eosinophilic renal cast (b) cystic dilation of renal tubules (c) hypertrophy of glomerular tuft (H& E X 400).
DISCUSSION

In the current study, both RIR and RIR treated rat groups did not show significant change from each other as regards the IBW, FBW, BWG or BWG%. These findings were contradicted with what was shown by Nitescu et al. (2007) of 10% reduction in body weight compared with sham-operated group. This might be explained by the difference in the timing of the body weight measurement in the present study which was at 24 hours after IR injury, while in the study of Nitescu et al. (2007) was after 48 hours.

The significant increase in absolute and relative kidney weights in RIR rat group were in agreement with the findings of Nuransoy et al. (2015). The significant increase in these two parameters despite the loss in functioning kidney mass can be ascribed to the congestion and edema observed in the histopathologic pictures of these rats' kidneys. Edema could be due to increased capillary leakiness which would further compromise renal perfusion by compressing peritubular capillaries.

Increased serum levels of urea and creatinine in RIR rat group reflected acute renal dysfunction. This was in accordance to the findings of previous studies (Venkatachalam et al., 2010 and Kim et al., 2011). The significant increase in serum creatinine as previously reported by Basile (2007) suggested decreased creatinine clearance which would indicate decreased glomerular filtration rate possibly due to glomerular damage that was evident in the histopathological picture of these rat kidneys which revealed atrophy, congestion and hypertrophy of glomerular tufts as well as necrobiosis of tubular epithelial lining, and tubular dilatation with proteinaceous material in their lumens. These findings clearly demonstrated the alteration in renal structure after IR injury which was consistent with the findings of Skrypnyk et al. (2016).

It was worth noting that the RIR rat group didn’t exhibit any significant increase in MDA levels in either the plasma or the kidneys which would exclude the possibility of oxidative stress as a suggested mechanism in the previous literature to be the cause of renal IR injury. This was consistent with the findings of Rasoulian et al. (2008) who showed unchanged MDA levels following IR, which was also supported by the findings of Tucci Junior et al. (2008) who showed that MDA rose significantly at 5 minutes of reperfusion and returned to pre-ischemic values after twenty-four hours. On the other hand, it was inconsistent with those of Ersoz et al. (2009) who found that MDA levels significantly increased after IR injury.

The unchanged levels of C-reactive protein in RIR rat groups excluded the possibility of post-surgery infection, and also excluded the possibility of inflammation as the mechanism underlying kidney injury. In support of this finding was the histological picture of the kidney that didn’t show infiltration of kidney tissue by inflammatory cells.

Blood coagulation parameters (PT, APTT and FDP) were not significantly changed in the RIR rat group which might exclude the possibility of increased level or enhanced activity of intrinsic and extrinsic pathways of coagulation as the mechanism underlying AKI in these rats. These results were in contrast to the
findings of Sevastos et al. (2007) and Ajay et al. (2012) who showed that renal IR might cause the accumulation of fibrinogen in the kidney and formation of micro-thrombi. RIR treated had insignificant changes in their hemostatic tests compared to the RIR and the sham operated rat groups which were in agreement with the findings of Bakaltcheva et al. (2001) and Morinobu et al. (2002) who showed that PT, APTT and bleeding time were not changed by dietary supplementation of Vitamin E.

CONCLUSION AND RECOMMENDATION

Oxidative stress and inflammation-associated coagulopathy might not be the principal mechanism underlying AKI due to ischemic reperfusion injury of the kidney. The form, dose, timing and route of vitamin E administration in the present study didn’t significantly improve the outcome of AKI induced by IR. Further studies using other forms, timing, doses and routes of vitamin E should be investigated.

ACKNOWLEDGEMENT

The authors would like to acknowledge their deepest gratitude and appreciation to Prof. Dr. Kawkab Abdelaziz Ahmed, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for her histopathological comment.

REFERENCES

10. Esterbauer, H. and Cheeseman, K. H. (1990): Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-
EFFECT OF VITAMIN E ON THE PROGRESSION OF RENAL ISCHEMIA...

تأثير فيتامين هـ على تطور القصور الكلوي الحاد التجريبي الناجم عن إعادة التروية بعد الإقفار على إناث الجرذان

نهال محمد بهجت جميل، سهى محمد يسري محمد، دعاء أحمد أبو بكر، بشت شاخر محمد السيد
قسم الفسيولوجي، كلية الطب، جامعة عين شمس

خلفية البحث: يعد القصور الكلوي الحاد خلال شائعًا عالميًا يسبب في الإعاقة والوفاة بدرجة كبيرة. ان الفسيولوجيا المرتبطة للقصور الكلوي الحاد معقدة تشمل تلف الأنسجة بالإجهاد التآكسدي، الالتهاب وتشتيت مثالي النسيج.

الهدف من البحث: معرفة التأثير العلاجي لفيتامين هـ على تطور القصور الكلوي الحاد التجريبي عند حقيقة مباشرة بعد إعادة التروية للكلئ بعد الإقفار لمدة 45 دقيقة.

مواد وطرائق الدراسة: أجريت هذه الدراسة على إناث الجرذان البالغة (48 جرذة) والثلاثي تتراوح أوزانهن بين 185-250 جرام.

وقد تم تقسيم الفئران عشوائيًا إلى المجموعات التالية:
1) مجموعة الجرذان الضابطة: خضعت هذه الفئران لجرحية كاذبة (العدد = 18).
2) مجموعة الجرذان المصابة بالقصور الكلوي الناجم عن إعادة التروية بعد الإقفار لمدة 45 دقيقة (العدد = 20).
3) مجموعة الجرذان المعالجة بفيتامين هـ مباشرة بعد الإصابة بالقصور الكلوي الناجم عن إعادة التروية بعد الإقفار لمدة 45 دقيقة (العدد=10).

وقد خضعت جميع الجرذان للقياسات التالية: وزن الجسم المبديئي و النهايي بعد 24 ساعة من الجراحة، و قد تم حساب النسبة المتوقعة للتغير في وزن الجسم و وزن الكليتين المطلق والساسي ومستوي الكرياتيين والبروتينات في الدم، و زمن الفروموبيستين الجزئي الملك، نواتج تكسيز الفيبرين. هذا بالإضافة إلى البروتينات التفاعلية (ج)، والمالونديالدهيد في الدم والنسيج الكلوي، كما تم فحص النسيج الكلوي المجهر الضوئي.

النتائج: أظهرت نتائج هذه الدراسة عدم وجود تغير ذو دلالة إحصائية في وزن الجسم بين المجموعات الثلاثة الخاضعة للدراسة، أما فيما يخص وزن الكليتين المطلق والساسي، فقد كانت هناك
زيادة ذات دلالات إحصائية بين المجموعة المصابة بالقصور الكلوي الناجم عن إعادة التروية بعد الإفقار لمدة 45 دقيقة، والمجموعة المعالجة بفيتامين ه بعد الإصابة بالقصور الكلوي الناجم عن إعادة التروية بعد الإفقار لمدة 45 دقيقة بالمقارنة مع قيم المجموعة الضابطة. ولم تظهر الدراسة وجود تغير ذو دلالة إحصائية في زمن البروتومين والبروتوكلاسيتين الجزيئي المنشط، وكذلك نوافذ تكسر الفيبرين بين المجموعات الثلاثة الخاصة للدراسة. أما فيما يخص وظائف الكلى، فقد كانت هناك زيادة ذات دلالات إحصائية في مستوى البول والكرياتين في الدم في المجموعة المصابة بالقصور الكلوي الناجم عن إعادة التروية بعد الإفقار لمدة 45 دقيقة، والمجموعة المعالجة بفيتامين ه بعد الإصابة بالقصور الكلوي الناجم عن إعادة التروية بعد الإفقار لمدة 45 دقيقة بالمقارنة مع قيم المجموعة الضابطة. كما أظهرت الدراسة عدم وجود تغير ذو دلالة إحصائية في مستوى البروتين التفاعلي (ج) والمالونديالدهيد في النسيج الكلوي أو الدم بين المجموعات الثلاثة الخاصة للدراسة.

وقد أظهر الفحص النسيجي للكلئي تغير في الشكل الطبيعي للنسيج الكلوي في كل المجموعات المصابة بالقصور الكلوي الناجم عن إعادة التروية بعد الإفقار لمدة 45 دقيقة سواء الغير المعالجة أو المعالجة بفيتامين ه بعد الإصابة و ذلك عند مقارنتهم بالمجموعة الضابطة. ولم يظهر الفحص النسيجي للكلئي تحسن "ملموس" في المجموعات المعالجة بفيتامين ه عند مقارنتها بالمجموعة المصابة بالقصور الكلوي الناجم عن إعادة التروية بعد الإفقار لمدة 45 دقيقة و التي لم تعالج بفيتامين ه.

الاستنتاج: فيتامين ه بالجرعة المستخدمة في هذه الدراسة (1000 ملغ/كيلوغرام وزن الجسم جرعة واحدة) مباشرة بعد الإصابة بالقصور الكلوي الناجم عن إعادة التروية بعد الإفقار لمدة 45 دقيقة لم يؤدى إلى تحسن ملموس في وظائف الكلى، ولم يساهم في تخفيف التلف الحاد في النسيج الكلوي نتيجة التروية بعد الإفقار.